miércoles, 28 de marzo de 2012

VARIANZA


VARIANZA

 
La varianza es la media aritmética del cuadrado de las desviaciones respecto a la media de una distribución estadística.
Propiedades de la varianza
1 La varianza será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales.
2 Si a todos los valores de la variable se les suma un número la varianza no varía.
3 Si todos los valores de la variable se multiplican por un número la varianza queda multiplicada por el cuadrado de dicho número.
4 Si tenemos varias distribuciones con la misma media y conocemos sus respectivas varianzas se puede calcular la varianza total.

Observaciones sobre la varianza
1 La varianza, al igual que la media, es un índice muy sensible a las puntuaciones extremas.
2 En los casos que no se pueda hallar la media tampoco será posible hallar la varianza.
3 La varianza no viene expresada en las mismas unidades que los datos, ya que las desviaciones están elevadas al cuadrado.

COEFICIENTE DE ASIMETRIA


Medidas de asimetría

Coeficiente de asimetría de Fisher
En teoría de la probabilidad y estadística, la medida de asimetría más utilizada parte del uso del tercer momento estándar. La razón de esto es que nos interesa mantener el signo de las desviaciones con respecto a la media, para obtener si son mayores las que ocurren a la derecha de la media que las de la izquierda.


Coeficiente de asimetría de Pearson

Sólo se puede utilizar en distribuciones uniformes, unimodales y moderadamente asimétricas. Se basa en que en distribuciones simétricas la media de la distribución es igual a la moda.

GRAFICACION

Gráficacion

Es la visualización de la correspondencia entre los elementos del conjunto dominio y los del conjunto imagen mediante su representación iconográfica. También puede definirse como el conjunto formado por todos los pares ordenados (x, f(x)) de la función f; es decir, como un subconjunto del producto cartesiano X×Y.

Las únicas funciones que se pueden visualizar de forma completa son las de una sola variable, representables como un sistema de coordenadas cartesianas, donde cada abscisa representa un valor de la variable del dominio y cada ordenada representa el valor correspondiente del conjunto imagen. Si la función es continua, entonces la gráfica formará una curva.

En el caso de funciones de dos variables es posible visualizarlas de forma unívoca mediante una proyección geométrica, pero a partir de tres variables tan solo es posible visualizar cortes de la función para los que los valores de todas las variables excepto dos permanezcan constantes.

El concepto de gráfica de una función se generaliza a la gráfica de una relación. Notar que si bien cada función tiene una única representación gráfica, pueden existir varias funciones que tengan la misma, pero con dominios y codominios diferentes.

DESVIACION MEDIA


Desviación estándar

La desviación estándar o desviación típica (denotada con el símbolo σ) es una medida de centralización o dispersión para variables de razón (ratio o cociente) y de intervalo, de gran utilidad en la estadística descriptiva.

Se define como la raíz cuadrada de la varianza. Junto con este valor, la desviación típica es una medida (cuadrática) que informa de la media de distancias que tienen los datos respecto de su media aritmética, expresada en las mismas unidades que la variable.

Para conocer con detalle un conjunto de datos, no basta con conocer las medidas de tendencia central, sino que necesitamos conocer también la desviación que presentan los datos en su distribución respecto de la media aritmética de dicha distribución, con objeto de tener una visión de los mismos más acorde con la realidad al momento de describirlos e interpretarlos para la toma de decisiones.

Formulación Muestral

La varianza representa la media aritmética de las desviaciones con respecto a la media que son elevadas al cuadrado.

Si atendemos a la colección completa de datos (la población en su totalidad) obtenemos la varianza poblacional; y si por el contrario prestamos atención sólo a una muestra de la población, obtenemos en su lugar la varianza muestral. Las expresiones de estas medidas son las que aparecen a continuación donde nos explican mejor el texto.
Por la formulación de la varianza podemos pasar a obtener la desviación estándar, tomando la raíz cuadrada positiva de la varianza. Así, si efectuamos la raíz de la varianza muestral, obtenemos la desviación típica muestral; y si por el contrario, efectuamos la raíz sobre la varianza poblacional, obtendremos la desviación típica poblacional.

COEFICIENTE DE KURTOSIS


Coeficiente de kurtosis

En teoría de la probabilidad y estadística, la curtosis es una medida de la forma o apuntamiento de las distribuciones. Así las medidas de curtosis (también llamadas de apuntamiento o de concentración central) tratan de estudiar la mayor o menor concentración de frecuencias alrededor de la media y en la zona central de la distribución.

Definición de kurtosis

El coeficiente de apuntamiento de uso más extendido es el basado en el cuarto momento con respecto a la media y se define como:


donde es el 4º momento centrado o con respecto a la media y es la desviación estándar.


En ocasiones se emplea esta otra definición del coeficiente de curtosis:


donde al final se ha sustraido 3 (que es la curtosis de la Normal) con objeto de generar un coeficiente que valga 0 para la Normal y tome a ésta como referencia de apuntamiento:

Tomando, pues, la distribución normal como referencia, una distribución puede ser:

  • más apuntada que la normal –leptocúrtica.
  • menos apuntada que la normal- platicúrtica.
  • la distribución normal es mesocúrtica.

En la distribución normal se verifica que donde es el momento de orden 4 respecto a la media y la desviación típica.


Así tendremos que:

  • Si la distribución es leptocúrtica.
  • Si la distribución es platicúrtica.
  • Si la distribución es mesocúrtica.





GRUPO C

INTEGRANTES
  • HERNANDEZ OSCOY CAROLINA
  • AQUINO AQUINO NAYELY
  • CONDE GONZALEZ MAYRA
  • CANO ROJAS VICTOR HUGO
  • GARCIA CRUZ CARLOS FERNANDO
  • GODINES BAUTISTA SHERLYN MONSERRATH
  • NUÑES ROJAS LUIS ALBERTO
  • PACHECO ALVAREZ SAYRA ITZEL
  • SIERRA ALCANTARA CARLOS ALBERTO
  • VELAZQUES TOLEDO KATIA YOCELIN